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Abstract. We investigate the low-temperature dynamics of a simple stochastic model,
introduced recently in the context of the physics of glasses. The slowest characteristic time
at equilibrium diverges exponentially at low temperature. On smaller time scales, the non-
equilibrium dynamics of the system exhibits an aging regime. We present an analytical study
of the scaling behaviour of the mean energy, of its local correlation and response functions,
and of the associated fluctuation–dissipation ratio throughout the regime of low temperature and
long times. This analysis includes the aging regime, the convergence to equilibrium, and the
crossover behaviour between them.

1. Introduction

The understanding of non-equilibrium phenomena owes much to the analysis of simple
models. For example, kinetic Ising models play an important role in the study of coarsening
phenomena [1–3]. The so-called Backgammon model is another example of a simple
model which brings useful insight into the fields of non-equilibrium statistical physics,
slow dynamics and aging phenomena [4–6]. It was initially introduced in the context of the
physics of glasses, as an illustration of the fact that a model possessing entropic barriers
only could reproduce some of the features of more complex models possessing both energy
and entropy barriers [7]. For example, this model exhibits non-stationary dynamics, with
aging of two-times quantities [7–11] and violation of the fluctuation–dissipation theorem
[12].

This work is devoted to the behaviour of the Backgammon model at finite temperature.
We perform an exact analysis of the convergence of the mean energy towards equilibrium,
and of the relaxation of the fluctuations of the energy in the equilibrium state. We also
give an analytical treatment of the non-equilibrium dynamics of the model, which becomes
asymptotically exact at long times and low temperature. This study is adapted from the
theoretical framework introduced in [11]. It allows us to show that the correlation and
response functions of the energy are aging at low temperature, to give their scaling forms,
and to compute the associated fluctuation–dissipation ratio. This analysis is made possible
by a specific feature of the model, already present at equilibrium, which is the existence
of a clear-cut separation of slow modes from fast ones, respectively known asα and β
relaxation in the phenomenology of glassy dynamics [6]. A parallel study of the dynamics
of the density fluctuations in this model will be the subject of a separate paper [13].

The model is defined as follows. ConsiderN particles, initially distributed amongstM
boxes in a known fashion. The energy of a box is equal to 0 if the box is occupied by one
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or more particles, and to−1 if it is empty. The total energy of the system is the sum of the
energies of each of the boxes; it is thus equal to minus the number of empty boxes. There is
no reference to a spatial structure in the definition of the model, hence it is of a mean-field
type. At each time step 1/N , a particle and a box are chosen independently at random.
The particle is moved to the box according to the Metropolis rule, i.e. with unit rate if the
energy does not increase, otherwise with rate e−β , whereβ is the inverse temperature. In
particular, moves from a box containing one particle to an empty box are always allowed,
since they do not change the total energy. This dynamics satisfies detailed balance.

The main features of this model are easy to grasp intuitively, and can be explained in
simple physical terms. Consider for simplicity the zero-temperature dynamics [7–11]. The
moves which decrease the energy consist in emptying the boxes which contain only one
particle, to the benefit of a non-empty box. As time passes, the number of empty boxes is
ever increasing, and so does the mean occupancy of non-empty boxes. It is therefore more
and more rare to find a box with only one particle. The dynamics is thus slowed down by
purely entropic effects, since there are no energy barriers.

Finally we recall that the present model is similar to a coarsening system which never
equilibrates [1, 2]. The mean occupancy of the non-empty boxes plays the role of the
mean domain size in the coarsening system. At zero temperature it grows approximately
as3(t) ∼ ln t , while the normalized two-time correlation function of the energy has the
scaling form [11]

C(t, s) ≈
( s
t

)1/2 ln s

ln t
. (1.1)

2. Physical quantities and their dynamical evolution

Consider a finite system, made ofM boxes containingN particles. LetNi(t) be the
occupation number of box numberi at time t , i.e. the number of particles contained in that
box. We have

M∑
i=1

Ni(t) = N. (2.1)

The model is characterized by the following HamiltonianH, and actionS, at inverse
temperatureβ:

S = βH = −β
M∑
i=1

δNi,0. (2.2)

We consider the system in the thermodynamic limit with a fixed density (M,N →∞,
ρ = N/M fixed). In the following we will be interested in quantities which involve the
occupation number of one box only. Therefore, taking box number 1 as a generic box,
we describe the dynamics of the system in terms ofN1(t) only. We denote byfk(t) the
probability that box number 1 containsk particles at timet :

fk(t) = Prob
{
N1(t) = k

}
. (2.3)

Equivalently,fk(t) represents the fraction of boxes containingk particles at timet .
Restricting the analysis to the homogeneous non-equilibrium initial condition where

there is one particle per box, we haveNi(t = 0) = 1 for all i, henceρ = 1 and

fk(0) = δk,1. (2.4)
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The occupation probabilitiesfk(t) obey the following dynamical equations, whose
derivation is given in appendix A:

dfk(t)

dt
= k + 1

3(t)
fk+1(t)+ fk−1(t)−

(
1+ k

3(t)

)
fk(t) (k > 2)

df1(t)

dt
= 2

3(t)
f2(t)+ µ(t)f0(t)− 2f1(t)

df0(t)

dt
= f1(t)− µ(t)f0(t)

(2.5)

where

1

3(t)
= 1+ (e−β − 1)f0(t) (2.6a)

µ(t) = e−β + (1− e−β)f1(t). (2.6b)

We introduce the compact notation

dfk(t)

dt
=
∑
`>0

Mk`[f0(t), f1(t)]f`(t) (2.7)

where the matrixM[f0(t), f1(t)] satisfies∑
k>0

Mk`[f0(t), f1(t)] = 0. (2.8)

The dynamical equations (2.5) are non-linear, since the transition rates involve3(t) and
µ(t), and thus depend onf0(t) andf1(t). We notice that the equation forf0(t) can be recast
as df0(t)/dt = f1(t)/3(t) − e−βf0(t). Finally, equations (2.5) ensure the conservation of
the moments∑

k>0

fk(t) = 1 〈N1(t)〉 =
∑
k>1

k fk(t) = ρ = 1. (2.9)

The dynamical equations (2.5) have a simple interpretation. IfN1(t) = k > 2, the rate
at which a particle enters box number 1 is unity, while the rateper particle for leaving
that box is 1/3(t). Hence the total departure rate isk/3(t). Therefore, ifk < 3(t) the
occupation number of the box has a tendency to increase, while ifk > 3(t) the tendency
is opposite. The occupation numberN1(t) can also be viewed as the position at timet
of a random walker on a semi-infinite chain, taking valuesN1(t) = k = 0, 1, . . ., and
obeying the master equation (2.5). The walk is biased to the left ifk > 3(t), to the right
if k < 3(t), so that the walker is confined aroundk = 3(t) by a restoring force. Hence
fk(t), the distribution ofN1(t), is expected to be peaked aroundk = 3(t) for long times,
and for3(t) large enough, i.e. at low temperature. Different rules hold atk = 0 and 1. In
particulark = 0 plays the role of an absorbing barrier [9].

Note that the average position of the walker〈N1(t)〉 is fixed by equation (2.9), so that
the distributionfk(t) will in fact be bimodal at low temperature. This property will be
illustrated by the case of the equilibrium distribution (see section 5). Finally, there are two
time scales in this system. On the shorter time scale,3(t) may be considered as constant,
so that there is equilibration in a fixed confining potential. On the longer scale, the potential
itself evolves slowly, as3(t) increases. These time scales will be identified in sections 5
and 6 with those ofα andβ relaxation, found in glassy dynamics.
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2.1. Mean energy

The first quantity to be studied is the energy of the system. According to equation (2.2), the
energy of box numberi is Ei(t) = −δNi(t),0. The mean energy per box of a thermodynamic
system thus reads

E(t) = 〈E1(t)〉 = −f0(t). (2.10)

It can be expressed in terms of3(t) as

E(t) = 1−3(t)
(1− e−β)3(t)

. (2.11)

At low temperature, we haveE(t) ≈ −1 + 1/3(t) up to an exponentially small
correction, proportional to e−β . The mean occupancy of the non-empty boxes is equal
to 1/(1− f0(t)) ≈ 3(t), again up to an exponentially small correction at low temperature,
hence the interpretation of3(t) as a characteristic domain size, in analogy with coarsening
systems.

2.2. The energy correlation function

The correlation functionc(t, s) between the values of the energyE1 of box number 1 at
the two timess (preparation time, or waiting time) andt (observation time) is defined as

c(t, s) = 〈E1(t)E1(s)〉 − 〈E1(t)〉〈E1(s)〉 (2.12)

with 0 6 s 6 t . Note that the present study is restricted to the local correlation function
c(t, s), disregarding the non-diagonal correlations between two different boxes.

Since we have〈E1(t)E1(s)〉 = Prob{N1(t) = 0, N1(s) = 0}, we are led to introduce
the joint probabilities Prob{N1(t) = k,N1(s) = 0}. Equivalently, we will consider the
conditional probabilitiesgk(t, s) that box number 1 containsk particles at timet , knowing
that it was empty at the earlier times:

gk(t, s) = Prob{N1(t) = k|N1(s) = 0}. (2.13)

These quantities obey the dynamical equations (see appendix A)

∂gk(t, s)

∂t
=
∑
`>0

Mk`[f0(t), f1(t)]g`(t, s) (2.14)

with the initial condition

gk(s, s) = δk,0. (2.15)

Equation (2.14) is now linear in the unknownsgk(t, s). It implies∑
k>0

gk(t, s) = 1 (2.16)

at all timest > s.
The energy correlation function then reads

c(t, s) = f0(s)(g0(t, s)− f0(t)). (2.17)

We also introduce the normalized correlation function

C(t, s) = c(t, s)

c(s, s)
= g0(t, s)− f0(t)

1− f0(s)
(2.18)

such thatC(s, s) = 1.
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2.3. The energy response function

The local response functionr(t, s) is a measure of the change in the energy of box number
1 at timet , induced by an infinitesimal change of the local temperature of the same box at
the earlier times.

More generally, assume that box number 1 is subjected to an arbitrary time-dependent
inverse temperatureβ1(t), while the other boxes (i = 2, . . . ,M) are subjected to a uniform
and constant inverse temperatureβ. To leading order at largeM, the occupation probabilities
of the boxesi = 2, . . . ,M are still given by thefk(t), while box number 1 has a different
distribution, depending onβ1(t), denoted byf β1

k (t).
The dynamical equations for thef β1

k (t) are slightly different from equations (2.5) (see
appendix A):

df β1
k (t)

dt
= k + 1

3(t)
f
β1
k+1(t)+ f β1

k−1(t)−
(

1+ k

3(t)

)
f
β1
k (t) (k > 2)

df β1
1 (t)

dt
= 2

3(t)
f
β1
2 (t)+ µ+(t)f β1

0 (t)− (1+ µ−(t)) f β1
1 (t)

df β1
0 (t)

dt
= µ−(t)f β1

1 (t)− µ+(t)f β1
0 (t)

(2.19)

with the initial value

f
β1
k (0) = δk,1. (2.20)

In equations (2.19) we have set

µ+(t) = (1− f1(t))e
−β1(t) + f1(t)W(β1(t)− β)

µ−(t) = 1− f0(t)+ f0(t)W(β − β1(t))
(2.21)

where

W(1S) = min(1, e−1S) (2.22)

is the Metropolis acceptance rate associated with a change of action1S (see equation (A.2)).
The response function is defined as

r(t, s) = −δ〈E1(t)〉
δβ1(s)

∣∣∣∣
β1(s)=β

. (2.23)

Defining more generally

hk(t, s) = δf
β1
k (t)

δβ1(s)

∣∣∣∣
β1(s)=β

(2.24)

we have

r(t, s) = h0(t, s). (2.25)

The dynamical equations forhk(t, s) are obtained by taking the functional derivative of
equations (2.19) with respect toβ1 for β1(s) = β. This yields

∂hk(t, s)

∂t
=
∑
`>0

Mk`[f0(t), f1(t)]h`(t, s) (2.26)

with the initial condition

hk(s, s) = (δk,0− δk,1)µ(s)f0(s). (2.27)
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Therefore ∑
k>0

hk(t, s) = 0 (2.28)

at all timest > s. It is to be noted that the above equations are not affected by the fact
that the derivative of the Metropolis acceptance rate (2.22) is not well defined at1S = 0.
Indeed, dW (1S → 0+)/d1S = −1 and dW (1S → 0−)/d1S = 0 do not coincide.

We also introduce the normalized response function

R(t, s) = r(t, s)

r(s, s)
= h0(t, s)

µ(s)f0(s)
(2.29)

such thatR(s, s) = 1.

2.4. The fluctuation–dissipation ratio

The fluctuation–dissipation ratioX(t, s) provides a measure of the departure of the system
from equilibrium [6, 14, 12]. In the present case it is defined as

r(t, s) = X(t, s)∂c(t, s)
∂s

. (2.30)

This definition contains no explicit temperature dependence, in contrast with the fluctuation–
dissipation ratio of, for example, density fluctuations.

The energy fluctuation–dissipation ratio can be expressed in terms of quantities
introduced above. Indeed∂gk(t, s)/∂s obeys the same dynamical equations asgk(t, s)

or hk(t, s) for t > s, sinces only enters these equations as a parameter. Moreover, let us
integrate equation (2.14) for thegk(t, s) to first order inε = t − s:

gk(t = s + ε, s) = δk,0+ (δk,1− δk,0)µ(s)ε +Oε2. (2.31)

Hence
∂gk(s, s)

∂s
= (δk,0− δk,1)µ(s). (2.32)

Comparing this last expression with the initial condition (2.27) for thehk(t, s) gives

hk(t, s) = f0(s)
∂gk(t, s)

∂s
. (2.33)

As a consequence,

∂c(t, s)

∂s
= h0(t, s)+ df0(s)

ds
(g0(t, s)− f0(t)) (2.34)

so that the fluctuation–dissipation ratioX(t, s) reads

X(t, s) = h0(t, s)

h0(t, s)+ df0(s)

ds (g0(t, s)− f0(t))
(2.35)

or else

X(t, s) = r(t, s)

r(t, s)+ 1
E(s)

dE(s)
ds c(t, s)

. (2.36)

We can check from this expression thatX(t, s) = 1 at equilibrium, recovering thus the
fluctuation–dissipation theorem

r(t, s) = ∂c(t, s)

∂s
(2.37)

while 0< X(t, s) < 1 out of equilibrium.
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3. Generating functions and integral representations

It is possible to obtain integral representations of the solutions of equations (2.5), (2.14)
and (2.26) by means of the generating functions

F(x, t) =
∑
k>0

fk(t) x
k G(x, t, s) =

∑
k>0

gk(t, s) x
k H(x, t, s) =

∑
k>0

hk(t, s) x
k.

(3.1)

These functions obey the following partial differential equations

∂

∂t
F (x, t) = (x − 1)

(
F(x, t)− 1

3(t)

∂

∂x
F (x, t)− Yf (t)

)
(3.2a)

∂

∂t
G(x, t, s) = (x − 1)

(
G(x, t, s)− 1

3(t)

∂

∂x
G(x, t, s)− Yg(t, s)

)
(3.2b)

∂

∂t
H(x, t, s) = (x − 1)

(
H(x, t, s)− 1

3(t)

∂

∂x
H(x, t, s)− Yh(t, s)

)
(3.2c)

where

Yf (t) = (1− e−β)f0(t) = 1− 1/3(t) (3.3a)

Yg(t, s) = (1− µ(t))g0(t, s)+ (1− 1/3(t))g1(t, s)

= (1− e−β)((1− f1(t))g0(t, s)+ f0(t)g1(t, s))

= (1− e−β)
(
g0(t, s)+ f0(t)

∂g0(t, s)

∂t
− df0(t)

dt
g0(t, s)

)
.

(3.3b)

Similar expressions forYh(t, s) are obtained by replacingg by h in the above
three expressions forYg. The initial conditions for equations (3.2) are derived from
equations (2.4), (2.15) and (2.27):

F(x, 0) = x G(x, s, s) = 1 H(x, s, s) = (1− x)µ(s)f0(s) (3.4)

while the conservation of moments expressed by equations (2.9), (2.16) and (2.28) implies

F(1, t) = ∂

∂x
F (1, t) = 1 G(1, t, s) = 1 H(1, t, s) = 0. (3.5)

Equations (3.2) can be formally solved by the method of characteristics (see appendix B),
yielding

F(x, t) = (1+ (x − 1)e−τ(t)
)

e(x−1)D(t,0) +
∫ t

0
duK(x, t, u)Yf (u) (3.6a)

G(x, t, s) = e(x−1)D(t,s) +
∫ t

s

duK(x, t, u)Yg(u, s) (3.6b)

H(x, t, s) = µ(s)f0(s)K(x, t, s)+
∫ t

s

duK(x, t, u)Yh(u, s) (3.6c)

with the definitions (B.4) and (B.7):

τ(t) =
∫ t

0

du

3(u)

D(t, u) =
∫ t

u

dv eτ(v)−τ(t)

K(x, t, u) = (1− x)eτ(u)−τ(t)+(x−1)D(t,u).

(3.7)
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Note that, in agreement with equation (2.33), we have

H(x, t, s) = f0(s)
∂G(x, t, s)

∂s
. (3.8)

Settingx = 0 in equations (3.6), we obtain

f0(t) = (1− e−τ(t))e−D(t,0) +
∫ t

0
duK(0, t, u)Yf (u) (3.9a)

g0(t, s) = e−D(t,s) +
∫ t

s

duK(0, t, u)Yg(u, s) (3.9b)

h0(t, s) = µ(s)f0(s)K(0, t, s)+
∫ t

s

duK(0, t, u)Yh(u, s). (3.9c)

Equation (3.9a) is an implicit non-linear integral equation for3(t), sincef0(t), τ(t),D(t, u),
andK(0, t, u) are defined in terms of3(t) by equations (2.6a) and (3.7). Let us finally
point out the central role played by the kernel

K(0, t, u) = eτ(u)−τ(t)−D(t,u) = ∂

∂u
e−D(t,u) (3.10)

in the following sections.

4. Infinite-temperature behaviour

At infinite temperature, the energy of configurations plays no role in the dynamics. The
rate at which a particle enters any box is constant and equal to unity, while the rate at
which a particle leaves the box is equal to unity, per particle. Hence3(t) = µ(t) = 1, and
equations (3.6) provide explicit solutions.

4.1. Mean energy

SinceYf (t) = 0, equation (3.6a) yields

F(x, t) = (1+ (x − 1)e−t ) exp((x − 1)(1− e−t )). (4.1)

The occupation probabilitiesfk(t) thus read

fk(t) = ((1− e−t )2+ ke−t )
(1− e−t )k−1 exp(e−t − 1)

k!
. (4.2)

In particular, the mean energy

E(t) = −f0(t) = (e−t − 1) exp(e−t − 1) = −1

e
+ 1

2e
e−2t + · · · (4.3)

converges to its equilibrium valueEeq= −e−1 with a relaxation timet (1)eq = 1
2.

4.2. Energy correlation and response functions

Similarly, noticing thatYg(t, s) = Yh(t, s) = 0, we obtain

G(x, t, s) = exp((x − 1)(1− es−t ))
H(x, t, s) = (1− x)(1− e−s) exp(e−s − 1+ s − t + (x − 1)(1− es−t )).

(4.4)
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We thus have

gk(t, s) = (1− es−t )k exp(es−t − 1)

k!

hk(t, s) = (1− e−s) exp(e−s + es−t − 2+ s − t) (1− es−t )k−1(1− k − es−t )
k!

.

(4.5)

Note that the distributions (4.2), (4.5) thus found are all related to Poisson distributions. In
particular thegk(t, s) follow an exact Poisson law, with parameter 1− es−t .

The energy correlation and response functions then read

c(t, s) = (1− e−s) exp(e−s − 2)(exp(es−t )− (1− e−t ) exp(e−t ))
r(t, s) = (1− e−s) exp(e−s + es−t − 2+ s − t), (4.6)

so that the fluctuation–dissipation ratio is given by

X(t, s) = (1− e−s)es−t

(1− e−s)es−t + e−2s(1− (1− e−t ) exp(e−t − es−t ))
. (4.7)

The equilibrium correlation and response functions only depend on the time difference
θ = t − s:

ceq(θ) = e−2(exp(e−θ )− 1) req(θ) = exp(e−θ − θ − 2) (4.8)

and they obey the fluctuation–dissipation theorem

req(θ) = −dceq(θ)

dθ
. (4.9)

The convergence ofc(t, s) and r(t, s) to their equilibrium valuesceq(θ) and req(θ) is
in e−2s , exhibiting again the relaxation timet (1)eq = 1

2, while the latter quantities fall off as
e−θ , with a relaxation timet (2)eq = 1. The occurrence of these two different relaxation times
will be explained in section 5.

5. Equilibrium properties and convergence to equilibrium

At finite temperature and for long enough times, the model reaches a stationary state,
corresponding to thermal equilibrium. In this section, we analyse the equilibrium behaviour
of the quantities defined above (mean energy, correlation and response functions). In
particular we compute the relaxation timest (1)eq and t (2)eq which characterize the convergence
of the mean energy to equilibrium, and the relaxation of the local fluctuations of energy at
thermal equilibrium, respectively.

5.1. Mean energy

The stationary solution of the dynamical equations (2.5) reads

(fk)eq= e−3eq
3k−1

eq

k!
(k > 1)

(f0)eq= 3eq− 1+ e−3eq

3eq
= eβ−3eq

3eq

(5.1)

where the value3eq of 3(t) at equilibrium is related to temperature by

eβ = 1+ (3eq− 1)e3eq. (5.2)
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The equilibrium thermodynamics of the model, summarized in appendix C, shows that3eq

is to be identified with the fugacity.
The occupation probabilities at equilibrium(fk)eq for k > 1 are thus Poissonian with

parameter3eq, with the exception of(f0)eq, reflecting that empty boxes are energetically
favoured. At low temperature, we have3eq ≈ β � 1, so that the(fk)eq form a strongly
bimodal distribution, with many empty boxes, represented by the weight(f0)eq≈ 1−1/3eq

at k = 0, and few occupied boxes, represented by the weight 1/3eq concentrated in a narrow
region of width

√
3eq aroundk = 3eq.

5.2. The relaxation time of the mean energy

The relaxation timet (1)eq of the mean energy can be derived as follows. First, using
equation (3.10), we recast equation (3.9a) into the form

f0(t) = 1−K(0, t,0)−
∫ t

0
du
K(0, t, u)
3(u)

. (5.3)

Next, in order to linearize this expression around equilibrium, we set

3(t) = 3eq+ δ3(t). (5.4)

We have then, to first order inδ3(t), settingε = t − u,

f0(t) = (f0)eq+ δf0(t) τ (t) = t

3eq
+ δτ(t)

D(t, u) = 3eq(1− e−ε/3eq)+ δD(t, u) K(0, t, u) = K(ε,3eq)+ δK(0, t, u)
(5.5)

where

δf0(t) ≈ 3eq− 1+ e−3eq

32
eq(3eq− 1)

δ3(t)

δD(t, u) ≈ 1

3eq

∫ ε

0
dζ(e−ζ/3eq − e−ε/3eq)δ3(t − ζ )

(5.6)

and where the equilibrium kernelK(ε,3eq) = limt→∞K(0, t, t − ε) reads

K(ε,3eq) = exp(−ε/3eq−3eq(1− e−ε/3eq)). (5.7)

This expression has the following simple relationship to the occupation probabilities(fk)eq:

K(ε,3eq) =
∑
k>1

k(fk)eqe−kε/3eq. (5.8)

For long enough times, the linearized form of equation (5.3) reads

δf0(t) ≈ 1

32
eq

∫ t

0
duK(t − u,3eq)δ3(u)− 1

3eq

∫ t

0
du δK(0, t, u). (5.9)

Using equations (3.10) and (5.6), we obtain

δf0(t) ≈ 1

32
eq

∫ ∞
0

dε
(
K(ε,3eq)− e−3eq−ε/3eq

)
δ3(t − ε). (5.10)

Taking the Laplace transform of equation (5.10) leads to the characteristic equation

3eq− 1+ e−3eq

3eq− 1
= K̂(p,3eq)− e−3eq

p + 1/3eq
(5.11)
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where the Laplace transform̂K(p,3eq) of K(ε,3eq) reads

K̂(p,3eq) =
∫ ∞

0
dε e−pεK(ε,3eq) = 3eq

∫ 1

0
dz zp3eqe3eq(z−1)

= e−3eq
∑
k>1

1

p + k/3eq

3k−1
eq

(k − 1)!
.

(5.12)

Notice that the subtracted term in the right-hand side of equation (5.11) is just the first term
(k = 1) in the last expansion of̂K(p,3eq).

Equation (5.11) has an infinite sequence of real negative solutions, which we denote by
p = −p(1)k , with k > 2. The characteristic valuesp(1)k represent the inverse characteristic
times of the relaxation of energy to its equilibrium value. In particular, the relaxation time
t (1)eq is the inverse of the smallest characteristic value:

t (1)eq =
1

p
(1)
2

. (5.13)

At infinite temperature(3eq = 1), the characteristic values are the poles ofK̂(p,3eq)

(except the first one, because of the subtraction), hencep
(1)
k = k with k > 2, andt (1)eq = 1

2. As
temperature decreases, the spectrum of characteristic values is continuously deformed, and
the solutions of equation (5.11) stay within a bounded distance from the poles ofK̂(p,3eq),
namelyp(1)k ≈ −k/3eq. At low temperature, the relaxation timet (1)eq is exponentially large
in 3eq. Indeed, we have the expansion aroundp = 0

K̂(p,3eq) = 1− e−3eq − p3eqe
−3eqI (3eq)+ · · · (5.14)

where [11]

I (3) =
∫ 1

0

dz

z
(e3z − 1) =

∑
n>1

3n

n n!
≈ e3

3

∑
`>0

`!

3`
. (5.15)

By inserting the expansion (5.14) into equation (5.11), we obtain

t (1)eq ≈
3eq− 1

3eq
I (3eq) (5.16)

i.e.

t (1)eq ≈
e3eq

3eq

(
1+ 1

32
eq

+ · · ·
)
≈ eβ

β2

(
1+ 2 lnβ + 1

β
+ · · ·

)
(5.17)

while all the other characteristic times are of order3eq≈ β at low temperature.

5.3. The energy correlation and response functions: generalities

At equilibrium, namely fors � t (1)eq , the energy correlation and response functions become
stationary, i.e. invariant under time translation. They only depend on the time difference
θ = t − s:

ceq(θ) = (f0)eq((g0)eq(θ)− (f0)eq) (5.18a)

req(θ) = (h0)eq(θ). (5.18b)
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Their expressions can be derived from equations (3.9b) and (3.9c), which respectively
become, settingε = t − u in the integrals,

(g0)eq(θ) = e−3eq(1−e−θ/3eq) +
∫ θ

0
dε K(ε,3eq)(Yg)eq(θ − ε) (5.19a)

(h0)eq(θ) = e−3eqK(θ,3eq)+
∫ θ

0
dε K(ε,3eq)(Yh)eq(θ − ε) (5.19b)

where the equilibrium kernelK(ε,3eq) has been defined in equation (5.7), and where

(Yg)eq(θ) = (1− e−β)((1− (f1)eq)(g0)eq(θ)+ (f0)eq(g1)eq(θ)) (5.20)

and a similar expression for(Yh)eq. First of all, we have the identity

(h0)eq(θ) = −(f0)eq
d(g0)eq(θ)

dθ
(5.21)

(see equation (2.33)), which expresses the fluctuation–dissipation theorem (2.37) in the form

req(θ) = −dceq(θ)

dθ
(5.22)

generalizing equation (4.9) to any finite temperature.
The integral equations (5.19) can be solved by Laplace transforms. Indeed, using the

definition ofYh and the dynamical equation (2.26) forh0, we obtain

(ĥ0)eq(p) = (f0)eq(1− p(ĝ0)eq(p)) = e−3eqK̂(p,3eq)

3eq− (3eq− 1)
(
p + 1

(f0)eq

)
K̂(p,3eq)

.

(5.23)

The function in the rightmost side of equation (5.23) is a meromorphic function, with an
infinite sequence of poles, situated on the real negative axis, which we denote byp = −p(2)k ,
with k > 1. Thep(2)k give the inverse characteristic times of the energy correlation and
response functions. In particular the relaxation time of these functions is the inverse of the
smallest pole:

t (2)eq =
1

p
(2)
1

. (5.24)

We have therefore

req(θ) = (h0)eq(θ) =
∑
k>1

ake
−p(2)k θ (5.25a)

ceq(θ) = (f0)eq((g0)eq(θ)− (f0)eq) =
∑
k>1

ak

p
(2)
k

e−p
(2)
k θ (5.25b)

where theak are the residues of the rightmost side of equation (5.23) at the polesp = −p(2)k .
The values of these functions atθ = 0 read

req(0) =
∑
k>1

ak = e−3eq (5.26a)

ceq(0) =
∑
k>1

ak

p
(2)
k

= (f0)eq(1− (f0)eq) = (1− e−3eq)(3eq− 1+ e−3eq)

32
eq

. (5.26b)

At infinite temperature(3eq = 1), the poles of equation (5.23) coincide with those of
K̂(p,3eq), hencep(2)k = k for k > 1, andt (2)eq = 1. Again, as temperature decreases, the
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Figure 1. Logarithmic plot of the relaxation timest (1)eq (mean energy) andt (2)eq (energy correlation
and response functions), against inverse temperatureβ. Full curves: exact relaxation times
(5.13), (5.24). Broken curves: low-temperature estimates (5.17), (5.28).

whole spectrum is continuously deformed, and the poles stay close to those ofK̂(p,3eq):
p
(2)
k ≈ −k/3eq. At low temperature, the relaxation timet (2)eq is exponentially divergent,

while all the other characteristic times remain of order3eq. Indeed, by expanding the
denominator of the rightmost side of equation (5.23) to first order inp, and using again the
expansion (5.14), we obtain

t (2)eq ≈
(3eq− 1)e3eq

32
eq

(32
eqe
−3eqI (3eq)+ 1−3eq) (5.27)

i.e.

t (2)eq ≈
2e3eq

3eq

(
1+ 2

32
eq

+ · · ·
)
≈ 2eβ

β2

(
1+ 2 lnβ + 1

β
+ · · ·

)
. (5.28)

Let us remark that the relaxation timet (2)eq of the energy correlation and response functions
is roughly twice as large as the relaxation timet (1)eq of the mean energy. Indeed the ratio

t (2)eq /t
(1)
eq is equal to two, both at infinite temperature(t (1)eq = 1

2, t
(2)
eq = 1) and at zero

temperature. We have in the low-temperature regime

t (2)eq

t
(1)
eq

≈ 2

(
1+ 1

32
eq

+ · · ·
)
≈ 2

(
1+ 1

β2
+ · · ·

)
. (5.29)

This ratio takes its maximal value 2.203 59 forβ = 4.1986. Figure 1 shows the dependence
on temperature oft (1)eq and t (2)eq , together with their low-temperature estimates (5.17), (5.28).

We have thus met two spectra of inverse characteristic times, thep
(1)
k , associated with

the convergence of the mean energy to its equilibrium value, and thep
(2)
k , associated with

the energy correlation and response functions at equilibrium. These spectra have a very
similar dependence on temperature. Their low-temperature behaviour is characterized as
follows: the relaxation timest (1)eq and t (2)eq become exponentially large in3eq or in β, while
the subleading characteristic times remain of order3eq. In analogy with the phenomenology
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of glassy dynamics, the slow modes corresponding to the time scaleθ ∼ t (1)eq ∼ t (2)eq ∼ e3eq

will be referred to asα relaxation, while the fast modes corresponding to the microscopic
time scaleθ ∼ 1 or θ ∼ 3eq will be referred to asβ relaxation. This separation of theα
andβ relaxation processes in a very clear-cut way is a remarkable feature of the present
model.

5.4. The energy correlation function

Let us now consider the low-temperature behaviour of the equilibrium correlation function
ceq(θ). Using again the expansion (5.14), we estimate the residuea1 as

a1 ≈ 3eq− 1

32
eq

p
(2)
1 ≈

e−3eq

32
eqe
−3eqI (3eq)+ 1−3eq

≈ e−3eq

2

(
1− 1

3eq
− 2

32
eq

+ · · ·
)
.

(5.30)

This expression shows that the sum of equation (5.26b) is overwhelmingly dominated by
its first term(k = 1), since the relative difference between the full sum and the first term
is exponentially small. As a consequence, the energy correlation function at equilibrium is
very close to being a pure decaying exponential, corresponding toα relaxation:

Ceq(θ) ≈ e−θ/t
(2)
eq (5.31)

with exponentially small corrections at low temperature.

5.5. The energy response function

In contrast with the simple behaviour (5.31) of the correlation function, the response function
req(θ) exhibits bothα andβ relaxation processes at low temperature.

(1) In the regime ofβ relaxation(θ ∼ 1), the response function at low temperature is
obtained by expanding equation (5.12) for3eq large butp finite:

K̂(p,3eq) = 1

p + 1
− p

(p + 1)33eq
+ · · · (5.32)

hence

ĥ0(p) ≈ e−3eq
p + 1

p(p + 2)
(5.33)

and

Req(θ) ≈ 1
2(1+ e−2θ ) (5.34)

up to correction terms of order 1/3eq.
(2) In the regime ofα relaxation(θ ∼ t (2)eq ), the asymptotic fall-off of the response

function reads

req(θ) ≈ a1e−θ/t
(2)
eq Req(θ) ≈ a1e3eqe−θ/t

(2)
eq (5.35)

wherea1 has been estimated in equation (5.30).
(3) In the crossover regime(1 � θ � t (2)eq ), the normalized response functionReq(θ)

exhibits a non-trivialβ-to-α plateau value

Rpl ≈ a1e3eq ≈ 1

2

(
1− 1

3eq
+ · · ·

)
≈ 1

2

(
1− 1

β
+ · · ·

)
(5.36)

asymptotically equal to1
2 at low temperature.
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(a)

(b)

Figure 2. Log–log plot of (a) the normalized correlation functionCeq(θ) and (b) the normalized
response functionReq(θ) at equilibrium, as given by the exact expressions (5.25), against the
time differenceθ = t − s, for various values of inverse temperatureβ, indicated on the curves.

Figure 2 shows log–log plots of (a) the normalized correlation functionCeq(θ) and (b)
the normalized response functionReq(θ), for various values of the inverse temperatureβ.
The different properties of these two functions, discussed above, are clearly apparent.

6. Non-equilibrium behaviour at low temperature

The equilibrium analysis of section 5 shows that, at low temperature, the model exhibits
slow modes (α relaxation, characterized by the time scalest (1)eq and t (2)eq ), well separated
from fast ones (β relaxation, characterized by the microscopic time scale∼1 or 3eq). In
this section, we show that this separation of modes at low temperature still holds out of
equilibrium. This property is at the basis of the analysis presented below. The latter consists
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of an adiabatic elimination of the fast modes (non-equilibriumβ relaxation), generalizing
the method used in [11]. We give an analytical treatment of the quantities of interest (mean
energy, correlation and response functions), which becomes asymptotically exact for long
times (s and t − s � 1, irrespectively of the relative positions of these variables with
respect to the relaxation timest (1)eq and t (2)eq ) and low temperatures. This regime, hereafter
called the (non-equilibrium)α regime, encompasses in particular the aging regime(s and
t − s � t (1)eq , t

(2)
eq ), and the regime of convergence to equilibrium(s � t (1)eq , t

(2)
eq ).

We begin the analysis by considering the difference

τ(t)− τ(u) =
∫ t

u

dv

3(v)
(6.1)

for t � 1 but ε = t − u ∼ 1. Since3(t) is varying slowly in theα regime under
consideration, we have d3(t)/dt � 3(t). Hence it is justified to perform a Taylor expansion
of 3(v) aroundv = t :

τ(t)− τ(u) =
∫ t

u

dv

(
1

3(t)
+ (t − v)d3(t)/dt

3(t)2
+ · · ·

)
= ε

3(t)
+ ε

2

2

d3(t)/dt

3(t)2
+ · · · .

(6.2)

This expansion makes sense whenε is small with respect to the characteristic time of
variation of3(t). Note that performing a Taylor expansion around the lower boundv = u
would lead to a result equivalent to equation (6.2). We have kept the first correction term,
in order to show explicitly that it is of relative order(d3(t)/dt)/3(t) � 1. Indeed this
quantity will turn out to be exponentially small in3(t) throughout theα regime.

The result (6.2) can be used to derive the following estimates

D(t, u) ≈ 3(t)(1− e−ε/3(t))

K(0, t, u) ≈ exp(−ε/3(t)−3(t)(1− e−ε/3(t))) = K(ε,3(t)) (6.3)

whereK(ε,3(t)) is obtained by replacing3eq by 3(t) in the expressions (5.12). As
mentioned above, the approximate results (6.2), (6.3) hold fort � 1 but ε = t − u ∼ 1.
It will, however, be legitimate to employ them for an arbitrary time differenceε, since the
quantitiesD(t, u)−3(t) andK(0, t, u) decay exponentially withε anyhow.

6.1. Mean energy

Considering now the integral equation (3.9a) for 3(t), we perform a Taylor expansion of
Yf (u) nearu = t . It can be checkeda posteriori that it is consistent to keep the first two
terms of this expansion. Neglecting furthermore quantities which are exponentially small
in t , we transform equation (3.9a) into the differential equation

f0(t) ≈ e−3(t) + J0(t)Yf (t)+ J1(t)
dYf (t)

dt
+ · · · (6.4)
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with

J0(t) =
∫ t

0
duK(0, t, u)

≈
∫ ∞

0
dε K(ε,3(t)) = K̂(0,3(t)) = 1− e−3(t)

J1(t) =
∫ t

0
du (u− t)K(0, t, u)

≈ −
∫ ∞

0
dε ε K(ε,3(t)) = dK̂(p,3(t))

dp

∣∣∣∣∣
p=0

= −3(t)e−3(t)I (3(t)).

(6.5)

By inserting the estimates (6.5) into equation (6.4), using equations (2.6a) and (3.3a),
and consistently neglecting terms of relative order e−3(t) or e−β , we obtain

d3(t)

dt
≈ A(3(t),3eq) (6.6)

with

A(3,3eq) = 1

I (3)

(
1− (3− 1)e3

(3eq− 1)e3eq

)
. (6.7)

The evolution equation (6.6) for3(t) describes the relaxation of energy throughout theα

regime. Let us consider the following cases.
(1) At zero temperature, and more generally in the aging regime(t � t (1)eq ), we recover

the result [11]:
d3

dt
≈ 1

I (3)
(6.8)

hence

t − t0 ≈
∫ 3

0
d3′ I (3′) =

∫ 1

0

dz

z2
(e3z − 1−3z) =

∑
n>1

3n+1

n(n+ 1)!
≈ e3

3

∑
`>0

(`+ 1)!

3`

(6.9)

or else

3(t) ≈ ln t + ln ln t + ln ln t − 2

ln t
+ · · · . (6.10)

It is natural to choose the constantt0 in order to fulfil the initial condition3(t = 0) = 1,
yielding t0 = −0.599 62. Anyhow,t0 only brings corrections to the scaling law (6.10)
which is exponentially small in3(t), i.e. comparable to the corrections terms which have
been neglected during the analysis.

(2) At finite (low) temperature, thermal equilibrium is reached for long enough times.
The convergence of3(t) towards the equilibrium value3eq is exponential:

3eq−3(t) ≈ a(3eq)e
−t/t (1)eq . (6.11)

The relaxation timet (1)eq reads

t (1)eq ≈ −
1

∂A(3,3eq)/∂3|3=3eq

≈ 3eq− 1

3eq
I (3eq) (6.12)

in agreement with the result (5.16) at equilibrium, while the prefactora(3eq) is given by

t (1)eq ln
a(3eq)

3eq
=
∫ 3eq

0
d3

(
1

A(3,3eq)
− t (1)eq

3eq−3

)
(6.13)
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Figure 3. Plot of 3(t) against lnt , for various values of inverse temperatureβ, indicated
on the curves. Full curves: exact values, obtained by numerical integration of the dynamical
equations (2.5). Broken curves: low-temperature estimates (6.6).

yielding, after some algebra,a(3eq) ≈ 1 for 3eq large.
(3) When timet is comparable to the relaxation timet (1)eq , 3(t) changes over from the

zero-temperature logarithmic growth (6.10) to the exponential convergence (6.11) towards
the equilibrium value3eq. The scaling behaviour throughout this crossover can be described,
to leading order in 1/3, by approximating equation (6.7) as

A(3,3eq) ≈ 3(e−3 − e−3eq). (6.14)

This equation can be integrated, to leading order in 1/3(t) and 1/3eq. Using the definition
(6.12), we are left with the explicit interpolation formula

t

t
(1)
eq

≈ − 3eq

3(t)
ln(1− e3(t)−3eq). (6.15)

Figure 3 illustrates the accuracy of the low-temperature analysis in theα regime. Exact
values for3(t), obtained by numerical integration of the dynamical equations (2.5), are
found to nicely agree with the prediction of the evolution equation (6.6), for various (large)
values of the inverse temperatureβ.

6.2. The energy correlation and response functions: generalities

In analogy with the derivation of equation (6.4), we transform equations (3.9b) and (3.9c)
into the following differential equations

g0(t, s) ≈ e−3(t) + L0(t, s)Yg(t, s)+ L1(t, s)
∂Yg(t, s)

∂t
+ · · ·

h0(t, s) ≈ L0(t, s)Yh(t, s)+ L1(t, s)
∂Yh(t, s)

∂t
+ · · ·

(6.16)

with

L0(t, s) =
∫ t

s

duK(0, t, u) L1(t, s) =
∫ t

s

du (u− t)K(0, t, u). (6.17)
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These integrals differ fromJ0(t) andJ1(t) of equation (6.4) only through the values of their
lower bounds. They are therefore given by the expressions (6.5), again up to exponentially
small corrections.

By inserting the estimates (6.5) into equation (6.16), using equation (3.3b) and similar
expressions forYh, and again consistently neglecting terms of relative order e−3 or e−β , we
obtain the homogeneous differential equations

1

c(t, s)

∂c(t, s)

∂t
≈ 1

r(t, s)

∂r(t, s)

∂t
≈ −B(3(t),3eq) (6.18)

with

B(3,3eq) =
A(3,3eq)+32

(
e−3 + e−3eq

3eq−1

)
3(32e−3I (3)+ 1−3) . (6.19)

Changing the time variables froms and t to 3(s) and3(t), we have the alternative form

1

c(t, s)

∂c(t, s)

∂3(t)
≈ 1

r(t, s)

∂r(t, s)

∂3(t)
≈ −α(3(t),3eq) (6.20)

with

α(3,3eq) = B(3,3eq)

A(3,3eq)
. (6.21)

These evolution equations describe the non-equilibrium relaxation of the correlation and
response functions of the energy throughout theα regime at low temperature, as we shall
see in more detail.

6.3. The energy correlation function

The correlation functionc(t, s) can be directly estimated from equation (6.20) with the
initial value c(s, s) = f0(s)(1− f0(s)), or C(s, s) = 1. Indeed, we know from the analysis
of the equilibrium properties that this function varies very little in theβ regime(t− s ∼ 1).
We thus obtain

C(t, s) ≈ exp

(
−
∫ 3(t)

3(s)

d3′ α(3′,3eq)

)
. (6.22)

This result can be recast into a multiplicative scaling law:

C(t, s) ≈ 8(3(s),3eq)

8(3(t),3eq)
(6.23)

with

8(3,3eq) = exp

(∫ 3

30

d3′ α(3′,3eq)

)
. (6.24)

An interesting interpretation of equation (6.23) consists in introducing an effective waiting
time

seff = 8(3(s),3eq)

d8(3(s),3eq)/ds
= 1

B(3(s),3eq)
(6.25)

along the lines of [6]. The correlation function and the effective waiting time exhibit several
regimes.

(1) At zero temperature, and more generally in the aging regime(s � t (2)eq ), we have

α(3,∞) = 32e−3I (3)+ 1

3(32e−3I (3)+ 1−3) ≈
1

2

(
1+ 1

3
− 2

32
+ · · ·

)
(6.26)
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hence the approximately square-root behaviour

8(3(s),∞) ≈ c0(3(s)e
3(s))1/2

(
1− 1

3(s)
+ · · ·

)
≈ c0s

1/2 ln s

(
1+ ln ln s − 2

ln s
+ · · ·

)
.

(6.27)

The absolute prefactorc0 depends on the initial conditions, according to

c0 = exp

(∫ ∞
30

d3

[
α(3,∞)− 1

2

(
1+ 1

3

)])
(6.28)

with the natural choice30 = 1 yielding c0 = 6.233 67. The effective waiting time reads

seff ≈ 2s

(
1− 2

3(s)
+ · · ·

)
≈ 2s

(
1− 2

ln s
+ · · ·

)
. (6.29)

(2) At finite (low) temperature and for long enough times, the scaling function8 blows
up exponentially, as

8(3(s),3eq) ≈ c0b(3eq)e
s/t

(2)
eq (6.30)

with

seff = t (2)eq ≈
1

B(3eq,3eq)
= (3eq− 1)e3eq

32
eq

(32
eqe
−3eqI (3eq)+ 1−3eq) (6.31)

in agreement with equation (5.27). The prefactorb(3eq) can be given a convergent integral
expression, similar to equation (6.13).

(3) In the crossover region, whens is comparable to the relaxation timest (1)eq andt (2)eq , the
scaling function8(3(s),3eq) changes over from the approximately square-root behaviour
(6.27) to the exponential behaviour (6.30). The scaling behaviour in this crossover can be
described, to leading order in 1/3, by approximating equation (6.21) as

α(3,3eq) ≈ 1

2(1− e3−3eq)
. (6.32)

This equation can be integrated, to leading order in 1/3(s) and 1/3eq. We thus obtain

8(3(s),3eq) ≈ (e−3(s) − e−3eq)−1/2 (6.33)

implying the estimate lnb(3eq) ≈ 3eq/2 for 3eq large. Accordingly, the effective waiting
time departs from its linear growth (6.29) ins to saturate to the value of the relaxation time
t (2)eq . This quantity admits the simple expression

seff ≈ 2e3(s)

3(s)
(6.34)

again to leading order in 1/3(s), throughout the crossover. The above results allow us
to describe the behaviour of the correlation function in theα regime, by inserting into the
scaling law (6.23) the estimates (6.27), (6.30) and (6.33) for each of the timess andt . The
absolute prefactorsc0 cancel out, so that the scaling law (6.23) does not depend on the initial
conditions, in agreement with the fact that only large times enter the expression (6.22). In
particular, in the aging regime(s andt � t (2)eq ), both8 functions have the behaviour (6.27),
so that we obtain

C(t, s) ≈
( s
t

)1/2 ln s

ln t
(6.35)

recovering the result of the zero-temperature analysis [11], recalled in equation (1.1). In the
converse situation(s, t � t (2)eq ), both8 functions have the exponential behaviour (6.30), so
that the equilibrium correlation function (5.31) is recovered.
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6.4. The energy response function

The response functionr(t, s) is expected to behave differently from the correlation function
c(t, s), and especially to exhibit an appreciable variation in theβ regime(θ = t − s ∼ 1),
in analogy with its equilibrium behaviour, described in section 5.

The variation ofr(t, s) throughout the non-equilibriumβ regime can be determined
by consideringh0(t, s) as a function ofθ , and by solving equation (3.9c) accordingly, by
means of a Laplace transform, as in section 5, up to the following differences: take3 equal
to3(s), and not to its equilibrium value3eq; considerf0(t) andf1(t) as variable quantities,
given by the dynamical equations (2.5). With these assumptions, closed equations for the
Laplace transformŝh0(p), ĥ1(p) and Ŷh(p) can be obtained, yielding after some algebra

r(t, s) ≈ µ(s)f0(s)R(3(s), θ) (6.36)

with

µ(s)f0(s) ≈ (3(s)− 1)(3(s)2e−β + A(3(s),3eq))

3(s)2
(6.37)

and whereR(3(s), θ) is obtained by replacing3eq by 3(s) in the expression of the
normalized response functionReq(θ) = e3eqreq(θ) at equilibrium, withreq(θ) being given
in equation (5.25a). The result (6.36) holds at low temperature, and fors � 1 andθ finite.

The response function exhibits aβ-to-α plateau for 1� θ � t (2)eq , with a plateau value

rpl(s) ≈ µ(s)f0(s)Rpl(3(s)) (6.38)

with (see equations (5.30) and (5.36))

Rpl(3(s)) ≈ 1

3(s)2e−3(s)I (3(s))+ 1−3(s) . (6.39)

The result (6.38) interpolates between the equilibrium valuerpl(s) = a1 for s � t (2)eq and
the zero-temperature value

rpl(s) ≈ 3(s)− 1

3(s)2I (3(s))(3(s)2e−3(s)I (3(s))+ 1−3(s)) (6.40)

for s � t (2)eq . The plateau value (6.38) is the appropriate initial condition to be inserted
into equation (6.18), in order to describe the non-equilibriumα relaxation of the response
function. We thus obtain

r(t, s) ≈ rpl(s)C(t, s). (6.41)

The above discussion of the scaling behaviour of the correlation functionC(t, s) applies to
the response functionr(t, s) throughout the low-temperatureα regime.

Figure 4 shows log–log plots of the normalized correlation function and response
function, for various values of the inverse temperatureβ. The data again nicely agree
with the predictions (6.23) and (6.41) of the low-temperature analysis in theα regime.

6.5. The fluctuation–dissipation ratio

The above results yield the following description of the non-equilibrium behaviour of the
fluctuation–dissipation ratioX(t, s). In theβ regime, we can approximateg0(t, s) by unity.
Setting againθ = t − s, and using equation (6.36), we obtain

X(t, s) ≈ 3(s)3µ(s)f0(s)R(3(s), θ)

3(s)3µ(s)f0(s)R(3(s), θ)+ A(3(s),3eq)
. (6.42)
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(a)

(b)

Figure 4. Log–log plot of (a) the normalized correlation functionC(t, s) and (b) the normalized
response functionR(t, s), against the time differencet − s, for a waiting times = 100, and
various values of inverse temperatureβ, indicated on the curves. Full curves: exact values,
obtained by numerical integration of the dynamical equations (2.14), (2.26). Broken curves:
predictions (6.23), (6.41) of the low-temperature analysis in theα regime.

HenceX(t, s) also exhibits aβ-to-α plateau for 1� θ � t (2)eq , with a plateau value

Xpl(s) ≈ 3(s)3µ(s)f0(s)Rpl(3(s))

3(s)3µ(s)f0(s)Rpl(3(s))+ A(3(s),3eq)
. (6.43)

This result interpolates between the equilibrium valueXpl(s) = 1 for s � t (2)eq and the value

Xpl(s) ≈ 3(s)(3(s)− 1)

3(s)2e−3(s)I (3(s))+ (3(s)− 1)2
≈ 1− 2

3(s)2
+ · · · ≈ 1− 2

(ln s)2
+ · · ·

(6.44)

at zero temperature, and more generally fors � t (2)eq .
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Figure 5. Plot of the fluctuation–dissipation ratioX(t, s) against the time differencet − s, for
a waiting times = 100, and various values of inverse temperatureβ, indicated on the curves.
Full curves: exact values, obtained by numerical integration of the dynamical equations (2.14),
(2.26). Arrows: low-temperature estimates (6.43) for the plateau valueXpl.

Finally, the evolution equations (6.18) and (6.20) imply that the fluctuation–dissipation
ratio X(t, s) remains equal toXpl(s) for all subsequent times(θ = t − s � 1). In other
words, the evolution of the fluctuation–dissipation ratio does not couple at all to the slow
dynamics of the model in theα regime. Figure 5 illustrates this behaviour.

7. Discussion

The present work is a continuation of previous studies [9, 11] of the so-called Backgammon
model, introduced in the context of the dynamics of glasses [7]. We have focused our
attention on the mean energy of the model, its local (or diagonal, see below) correlation and
response functions at finite temperature, and the associated fluctuation–dissipation ratio.
The analysis of equilibrium properties (section 5) has revealed a remarkable feature of
the model, namely the possibility of separating in a controlled way the slow modes (α

relaxation) from the fast ones (β relaxation). This property is at the basis of the analytical
treatment of the dynamics (section 6), which becomes asymptotically exact in the regime
of non-equilibriumα relaxation: low temperatures and long times (s and t − s � 1). This
approach consists in eliminating the fast degrees of freedom, corresponding toβ relaxation.
It allows a quantitative description of the aging regime (correlation and response decay as
a power law, the effective waiting time grows linearly), of the convergence to equilibrium
(correlation and response decay exponentially with characteristic timet (2)eq of the equilibrium
situation, the effective waiting time saturates tot (2)eq ), and of the crossover behaviour between
them. The present method is an extension of the approach developed at zero temperature
[11], interpreted there as an adiabatic approximation. It is worth noticing that the physical
picture ofα andβ relaxation was absent from this zero-temperature analysis.

The multiplicative scaling law (6.23) of the energy correlation function in theα regime is
one of the main results of this work. It is consistent with the description of non-equilibrium
glassy dynamics given, for example, in [6]. Especially, for any three (long enough) times,
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we haveC(t1, t3) = F
(
C(t1, t2), C(t2, t3)

)
, with F(u, v) = uv. The associated fixed-

point equationu = F(u, u) only has the trivial solutionsu = 0 and u = 1. This
simplistic behaviour reflects that the correlation function has no non-trivial plateau value.
An investigation of the density correlation and response functions, and of the associated
fluctuation–dissipation ratio, will be the subject of a separate paper [13]. The density
correlation function does exhibit a non-trivial plateau value [12].

In this work we concentrated on the diagonal parts of the correlation and response
functions of energy, which involve the same box at two different timess and t . These
diagonal contributions are known to be the leading ones in disordered systems, such as
spin glasses. In the present model, however, non-diagonal correlations, involving say box
number 1 at times and box number 2 at timet , are not negligible in general. Let us take
the example of equal-time equilibrium correlations of the energy. The diagonal correlation
〈E2

1〉− 〈E1〉2 = (f0)eq(1− (f0)eq) yields a contributionCdiag
eq = β2(f0)eq(1− (f0)eq) ≈ β to

the low-temperature specific heat per box. On the other hand, the total specific heat at low
temperature, given in equation (C.8), readsCeq≈ 1. We have thereforeCeq� C

diag
eq . This

demonstrates the role of non-diagonal correlations, which screen the diagonal ones almost
perfectly in this example.

The present work can also be extended in another direction. In [9] three variants of
the Backgammon model, with different dynamical rules, were introduced and investigated
at zero temperature. The model studied in the present work is model A, the other two
being models B and C. We wish to emphasize that only model A has the property that the
spectrum of relaxation times at equilibrium can be split in a controlled way into anα and
a β component. We also recall that only model A possesses entropic traps and a very slow
zero-temperature dynamics(3(t) ∼ ln t), while3(t) obeys a power-law growth for models
B and C [9]. These two properties therefore seem to go hand in hand. Finally, we would
like to mention a generalization of model B which undergoes a condensation transition at
finite temperature [15].
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Appendix A. The derivation of dynamical equations

A.1. The case offk, gk, andhk

The rules defining the dynamics of the model are as follows. For a system ofM boxes and
N particles, during every time step dt = 1/N :
• a particle is drawn at random, which determines a departure boxd which is thus

chosen with probabilityπd = Nd/N , since it containsNd particles;
• an arrival boxa, different from d, is drawn at random with uniform probability

πa = 1/(M − 1);
• the move is accepted according to the Metropolis rule.
A configuration of the system is given by the occupation numbers of the boxes:C = {N1,

N2, . . . , NM}, with
∑

i Ni = N . We first determine the transition rates appearing in the
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master equation
d

dt
P (C) =

∑
C ′ 6=C
M(C|C ′)P (C ′)−

∑
C ′′ 6=C
M(C ′′|C)P (C). (A.1)

Let us consider the rateM(C ′′|C) for definiteness. We use the following notation for
the initial configuration:C = {N1, . . . , Nd, . . . , Na, . . . , NM} = {Nd,Na}. Then the final
configuration isC ′′ = {Nd − 1, Na + 1}. The Metropolis acceptance rate reads

W(Nd − 1, Na + 1|Nd,Na) =W(1S) = min(1, e−1S) (A.2)

where the change in action is

1S = S(Nd − 1, Na + 1)− S(Nd,Na) = −β(δNd,1− δNa,0). (A.3)

The possible transitions to be considered are

C = {Nd > 1, Na > 0} 1S = 0 W(Nd − 1, Na + 1|Nd,Na) = 1

C = {Nd > 1, Na = 0} 1S = β W(Nd − 1, Na + 1|Nd,Na) = e−β

C = {Nd = 1, Na > 0} 1S = −β W(Nd − 1, Na + 1|Nd,Na) = 1

C = {Nd = 1, Na = 0} 1S = 0 W(Nd − 1, Na + 1|Nd,Na) = 1.

(A.4)

The transition rateM(C ′′|C) is thus given by

M(C ′′|C) =M(Nd − 1, Na + 1|Nd,Na) = 1

dt
πdπaW(Nd − 1, Na + 1|Nd,Na). (A.5)

We now consider the reduced configuration characterized by the occupation number of
box number 1 alone:C = {N1(t)} = {k}. The transition ratesM(C ′′|C)=M(k ± 1|k)
respectively correspond to the case where box number 1 is the arrival box(a = 1:
upper sign) and the departure box(d = 1: lower sign). They are obtained by summing
equation (A.5) over all the boxes. In the thermodynamic limit (M,N → ∞, with a fixed
densityρ = N/M), we obtain†

M(k + 1|k) = 1

dt

∑
d

πdπ1W(Nd − 1, N1+ 1|Nd,N1) = ρ (k > 1)

M(k − 1|k) = 1

dt

∑
a

π1πaW(N1− 1, Na + 1|N1, Na) = k(1− f0+ e−βf0) (k > 2)

M(1|0) = 1

dt

∑
d

πdπ1W(Nd − 1, N1+ 1|Nd,N1) = f1+ e−β(ρ − f1)

M(0|1) = 1

dt

∑
a

π1πaW(N1− 1, Na + 1|N1, Na) = 1.

(A.6)

The ratesM(C|C ′)=M(k|k ± 1) are also given by these expressions.
With the notationMk`[f0(t), f1(t)] = M(k|`), and settingρ = 1, we obtain the

dynamical equations (2.5) and (2.7), i.e.
dfk(t)

dt
=
∑
`>0

Mk`

[
f0(t), f1(t)

]
f`(t). (A.7)

The gk(t, s) obey the similar equation (2.14), since the time variables plays the role
of a parameter in the dynamics. Finally, thehk(t, s) obey equation (2.26), as explained in
section 2.

† In this limit, it does not matter whether the boxes which are summed upon are assumed to be different or not
from box number 1.
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A.2. The case off β1
k

The only change with respect to the previous case comes from the fact that the local inverse
temperature of box number 1 is nowβ1(t). The action therefore reads

S = β1(t)E1+ β
M∑
i=2

Ei = −β1(t)δN1,0− β
M∑
i=2

δNi,0 (A.8)

hence

1S = S(Nd − 1, Na + 1)− S(Nd,Na) = βaδNa,0− βdδNd,1. (A.9)

The possible transitions to be considered are

C = {Nd > 1, Na > 0} 1S = 0 W(Nd − 1, Na + 1|Nd,Na) = 1

C = {Nd > 1, Na = 0} 1S = βa W(Nd − 1, Na + 1|Nd,Na) = e−βa

C = {Nd = 1, Na > 0} 1S = −βd W(Nd − 1, Na + 1|Nd,Na) = 1

C = {Nd = 1, Na = 0} 1S = βa − βd W(Nd − 1, Na + 1|Nd,Na) =W(1S).

(A.10)

Pursuing the derivation as above, we obtain the dynamical equations (2.19).

Appendix B. The solutions of equations (3.2) by the method of characteristics

We recall how to solve, using the method of characteristics, a partial differential equation
of the form

∂

∂t
G(x, t, s) = (x − 1)

(
G(x, t, s)− 1

3(t)

∂

∂x
G(x, t, s)− Y (t, s)

)
(B.1)

for t > s, whereY (t, s) is a given function, and where the initial valueG(x, s, s) is also
given.

The starting point of the method consists in writing the proportionality

dt = dx

(x − 1)/3(t)
= dG

(x − 1)(G− Y ) . (B.2)

The first equality in equation (B.2) yields

x − 1= yeτ(t) (B.3)

with

τ(t) =
∫ t

0

du

3(u)
(B.4)

and where the constanty parametrizes the characteristic curves.
The second equality in equation (B.2) then reads

dG

dt
= yeτ(t)(G− Y ) (B.5)

which can be integrated by varying the constant. This yields, taking into account the initial
condition,

G(x, t, s) = e(x−1)D(t,s)G(1+ (x − 1)eτ(s)−τ(t), s, s)+
∫ t

s

duK(x, t, u)Y (u, s) (B.6)

with the definitions

D(t, u) =
∫ t

u

dv eτ(v)−τ(t)

K(x, t, u) = (1− x)eτ(u)−τ(t)+(x−1)D(t,u).

(B.7)
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Appendix C. Equilibrium thermodynamics

Consider a system made ofM boxes containingN particles. As in appendix A, we
define a configurationC of the system as given by the occupation numbers of the boxes:
C = {N1, N2, . . . , NM}, with

∑
i Ni = N . The partition function of the system reads

ZM,N = 1

N !

∑
{Ni>0,

∑
i Ni=N}

N !∏
i Ni !

eβ
∑

i δNi ,0. (C.1)

The combinatorial weight inside the sum represents the number of microstates corresponding
to each configurationC, where a microstate is defined by assigning in which box lies each
of the N particles. The overall 1/N ! in front of the sum takes account of the fact that
a global relabelling of the identical particles does not affect equilibrium properties. This
statistic, used, for example, for ideal gases of classical particles, is usually referred to as
the Maxwell–Boltzmann statistic [16].

Inserting into equation (C.1) the contour integral representation
∮

dz
2π iz z

∑
i Ni−N for the

constraint, we obtain

ZM,N =
∮

dz

2π iz
s(z)Mz−N (C.2)

with

s(z) =
∑
k>0

eβδk,0

k!
zk = ez + eβ − 1. (C.3)

We have in particularZM,N = MN/N ! at infinite temperature.
In the thermodynamic limit(M,N → ∞), the densityρ = N/M being fixed, the

method of steepest descent can be applied to the integral (C.2). The saddle-point equation
reads ds(z)/dz = ρs(z)/z. The saddle-point valuezc of z, which is by definition the
thermodynamical fugacity of the model, is thus related to temperature and density through

eβ = 1+ (zc/ρ − 1)ezc. (C.4)

The free energy of the model is an extensive quantity, and its value per box reads

−βF = ln s(zc)− ρ ln zc = zc + (1− ρ) ln zc − ln ρ. (C.5)

Physical quantities can be derived along the same lines. For instance, by restricting the
sum in equation (C.1) to the configurations{Ni} such that

∑
i Ni = N andN1 = k, we

obtain for a finite system

(fk)M,N = 1

ZM,N

eβδk,0

k!

∮
dz

2π iz
s(z)M−1zk−N (C.6)

and in the thermodynamic limit

(fk)eq= ρ exp(−zc + βδk,0)z
k−1
c

k!
. (C.7)

We now restrict ourselves to the caseρ = 1, considered in the body of the paper.
Equations (5.2) and (C.4) show that the fugacityzc is identical to the equilibrium value3eq

of 3(t), while equation (5.1) for the occupation probabilities coincides with equation (C.7).
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The low-temperature behaviour of various thermodynamical quantities, such as the
fugacity 3eq = zc, the internal energyEeq = −(f0)eq, and the specific heatCeq =
−β2 dEeq/dβ, is obtained by expanding the above results forβ →∞:

3eq= β − lnβ + lnβ + 1

β
+ ln2 β − 1

2β2
+ · · ·

Eeq= −1+ 1

β
+ lnβ

β2
+ ln2 β − lnβ − 1

β3
+ · · ·

Ceq= 1+ 2 lnβ − 1

β
+ 3 ln2 β − 5 lnβ − 2

β2
+ · · · .

(C.8)

The constant equilibrium specific heatCeq ≈ 1 at low temperature is a somewhat
pathological feature of the model [16], that is shared by several classical systems, such
as the ideal gas and the harmonic oscillator.
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